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Abstract
The nonlinear Kelvin–Helmholtz stability of the interface between the vapour
and liquid phases of a fluid is studied when the phases are confined between two
parallel lines, and when there is mass and heat transfer across the interface. The
method of multiple time expansion is used for the investigation. The evolution
of amplitude is shown to be governed by a nonlinear first-order differential
equation. The stability criterion is discussed, and the region of stability is
displayed graphically.

PACS number: 47.20.Ma

Nomenclature

F(x, y, t) = 0 function for the interface
n outward vector normal to the interface
η perturbation from the equilibrium interface
ρ(1) density of fluid 1
ρ(2) density of fluid 2
U1 streaming velocity of fluid 1
U2 streaming velocity of fluid 2
φ(1) velocity potential for fluid 1
φ(2) velocity potential for fluid 2
L the latent heat
S(η) net heat flux from the interface
K1 heat conductivity of fluid 1
K2 heat conductivity of fluid 2
h1 depth of fluid 1
h2 height of fluid 2
T0 temperature at y = 0
T1 temperature at y = −h1

T2 temperature at y = h2

p1 pressure in fluid 1
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p2 pressure in fluid 2
σ surface tension
A(t1, t2) amplitude of the perturbation η

ω frequency of the wave
k wave number
g gravity

1. Introduction

In dealing with the flow of two fluids divided by an interface, the problem of interfacial stability
is usually studied without taking into account the heat and mass transfer across the interface.
The classical Kelvin–Helmholtz stability [1] as well as other variations of the problem, such
as the stability of bubble motion in a liquid, all belong to this category. However, there are
situations when the effect of mass and heat transfer across the interface should be taken into
account in stability discussions. For instance, the phenomenon of boiling accompanies high
heat and mass transfer rates which are significant in determining the flow field and the stability
of the system.

Hsieh [2] presented a simplified formulation of interfacial flow problem with mass and
heat transfer, and studied the problems of Rayleigh–Taylor and Kelvin–Helmholtz stability
in the plane geometry. Knowledge of the mechanism of heat and mass transfer across an
interface is important in many areas of engineering. Such a mechanism can be noticeable in
various industrial processes such as gas absorption, evaporation equipment, and so on.

Hsieh [3] found that from the linearized analysis, when the vapour region is hotter than the
liquid region, as is usually so, the effect of mass and heat transfer tends to inhibit the growth
of the instability. Thus for the problem of film boiling, the instability would be reduced yet
would persist according to linear analysis.

It is clear that such a uniform model based on the linear theory is inadequate to answer
the question of whether and how the effect of heat mass would stabilize the system, since the
stability criterion remains the same regardless the amount of heat flux of the system, so the
nonlinear analysis is needed to answer the question.

Although the nonlinear problem of Rayleigh–Taylor instability of a system of two
incompressible inviscid fluid layers has been studied by various authors, (see, for example
[4–6]) the investigation of nonlinear Kelvin–Helmholtz instability of such system is rather
scant; however some recent and representative results of related works are contained in
[7–11].

The purpose of this paper is to investigate the Kelvin–Helmholtz nonlinear instability of
the interface between the vapour and liquid phases of a fluid when there is a mass and heat
transfer across the interface.

The multiple scales method [12] which is applied in the recent work of Lee [13, 14] is
used to obtain a first-order nonlinear differential equation, and in the present work, we have
shown in graphical forms the regions of stability for various values of the flow speed. It is
found that the instability is much reduced in the nonlinear theory and the regions of stability
exist in the form of a band.

The basic equations with the accompanying boundary conditions are given in section 2.
The first-order theory and the linear dispersion relation are obtained in section 3. In section 4
we have derived second-order solutions. In section 5 a first-order nonlinear differential
equation is obtained, and in section 6 some numerical examples are presented in graphical
form.
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Figure 1. The equilibrium configuration of the fluid system.

2. Formulation of the problem and basic equations

Consider two inviscid, incompressible fluid layers as shown in figure 1. The interface, after a
disturbance, is given by the equation

F(x, y, t) = y − η(x, t) = 0, (2.1)

where η is the perturbation from the equilibrium interface y = 0, and for which the outward
normal vector is written as

n = ∇F

|∇F | =
{

1 +

(
∂η

∂x

)2
}−1/2 (

−∂η

∂x
ex + ey

)
. (2.2)

With the introduction of the function F(x, y, t) = 0, equations can be written in more concise
forms. The fluid phase 1, of density ρ(1), occupies the region −h1 < y < η, and, the fluid
phase 2, of density ρ(2), occupies the region η < y < h2. The lower and upper fluids are
streaming along the x-axis with uniform velocities U1 and U2, respectively. We assume that the
bounding surfaces y = −h1 and y = h2 are taken as rigid. The temperature at y = −h1, y = 0
and y = h2 are taken as T1, T0 and T2 respectively. We assume that the fluid flow is irrotational
in the region so that velocity potentials are φ(1) and φ(2) for fluid phases 1 and 2. In each fluid
phase

∇2φ(j) = 0, (j = 1, 2). (2.3)

The velocity potentials satisfy the boundary conditions

∂φ(1)

∂y
= 0 on y = −h1, (2.4)

∂φ(2)

∂y
= 0 on y = h2. (2.5)

The interfacial conditions that express the conservation of mass across the interface are
given by [6][[

ρ

(
∂F

∂t
+ ∇φ · ∇F

)]]
= 0, or

[[
ρ

(
∂φ

∂y
− ∂η

∂t
− ∂η

∂x

∂φ

∂x

)]]
= 0 at y = η,

(2.6)
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where [[h]] represents the difference in a quantity as we cross the interface, i.e., [[h]] =
h(2) − h(1), where superscripts refer to upper and lower fluids, respectively.

The interfacial condition for energy is

Lρ(1)

(
∂F

∂t
+ ∇φ(1) · ∇F

)
= S(η) at y = η, (2.7)

where L is the latent heat released when the fluid is transformed from phase 1 to phase 2. The
expression S(η) on the right-hand side of (2.7) essentially represents the net heat flux from the
interface, while the left-hand side of (2.7) represents the latent heat released during the phase
transformation, when such a phase transformation takes place.

In the equilibrium state, the heat fluxes in the positive y-direction in the fluid phases 1
and 2 are K1(T1 − T0)/h1 and K2(T0 − T2)/h2, where K1 and K2 are the heat conductivities
of the two fluids. As in Hsieh (1978), we denote

S(y) = K2(T0 − T2)

h2 − y
− K1(T1 − T0)

h1 + y
. (2.8)

When the interface is perturbed to become y = η, the function S in (2.7) is given by (2.8) and
we expand it about y = 0 by Maclaurin’s expansion, such as

S(η) = S(0) + ηS ′(0) + 1
2η2S ′′(0) + 1

6η3S ′′′(0) + · · · , (2.9)

and since S(0) = 0, from (2.8) we obtain

K2(T0 − T2)

h2
= K1(T1 − T0)

h1
= G(say). (2.10)

Thus in the equilibrium state the heat fluxes are equal across the interface in the two fluids.
From (2.1), and (2.7)–(2.10), we have

ρ(1)

(
∂φ(1)

∂y
− ∂η

∂t
− ∂η

∂x

∂φ(1)

∂x

)
= α(η + α2η

2 + α3η
3), (2.11)

where

α = G

L

(
1

h1
+

1

h2

)
, α2 = −

(
1

h1
− 1

h2

)
, α3 = h3

1 + h3
2

(h1 + h2)h
2
1h

2
2

By considering the mass transfer across the interface, the conservation of momentum
balance is

ρ(1)(∇φ(1) · ∇F)

(
∂F

∂t
+ ∇φ(1) · ∇F

)
= ρ(2)(∇φ(2) · ∇F)

(
∂F

∂t
+ ∇φ(2) · ∇F

)
+ (p2 − p1 + σ∇ · n)|∇F |2 at y = η, (2.12)

where p is the pressure and σ is the surface tension coefficient, respectively.
We use Bernoulli’s equation to eliminate the pressure in the above condition (2.12) which

can be rewritten as[[
ρ

{
∂φ

∂t
+

1

2

(
∂φ

∂y

)2

+
1

2

(
∂φ

∂x

)2

+ gη −
{

1 +

(
∂η

∂x

)2
}−1 (

∂φ

∂x

∂η

∂x
− ∂φ

∂y

)

×
(

∂η

∂t
+

∂φ

∂x

∂η

∂x
− ∂φ

∂y

) }]]
= −σ

∂2η

∂x2

{
1 +

(
∂η

∂x

)2
}−3/2

, (2.13)

where g is the gravity.
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To investigate the nonlinear effects on the stability of the system, we employ the method
of multiple scales. Introducing ε as a small parameter, we assume the following expansion of
the variables:

η =
3∑

n=1

εnηn(x, t0, t1, t2) + O(ε4), (2.14)

φ(j) =
3∑

n=0

εnφ(j)
n (x, y, t0, t1, t2) + O(ε4), (j = 1, 2) (2.15)

where tn = εnt (n = 0, 1, 2). The quantities appearing in the field equations (2.3) and the
boundary conditions (2.6), (2.11) and (2.13) can now be expressed in the Maclaurin series
expansion around y = 0. Then, we use (2.14) and (2.15) and equate the coefficients of equal
power series in ε to obtain the linear and the successive nonlinear partial differential equations
of various orders (see appendix B).

3. Linear theory

We take

φ
(j)

0 = Ujx, (j = 1, 2).

The linear wave solutions of (2.3) subject to boundary conditions yield

η1 = A(t1, t2) eiθ + Ā(t1, t2) e−iθ , (3.1)

φ
(1)
1 = 1

k

(
α

ρ(1)
− iω + ikU1

)
A(t1, t2)

cosh k(y + h1)

sinh kh1
eiθ + c.c., (3.2)

φ
(2)
1 = −1

k

(
α

ρ(2)
− iω + ikU2

)
A(t1, t2)

cosh k(y − h2)

sinh kh2
eiθ + c.c., (3.3)

where θ = kx − ωt0.

Remark. In (3.1)–(3.3), and in the following, the complex conjugate of A eiθ is denoted by
Ā e−iθ but not by Ā e−iθ̄ . So the complex conjugate notation here is not rigorous.

Substituting (3.1)–(3.3) into (2.13), we obtain the following dispersion relation:

D(ω, k) = a0ω
2 + (a1 + ib1)ω + a2 + ib2 = 0, (3.4)

where

a0 = ρ(1) coth kh1 + ρ(2) coth kh2,

a1 = −2k{ρ(2)U2 coth kh2 + ρ(1)U1 coth kh1},
b1 = α{coth kh1 + coth kh2},
a2 = k2

{
ρ(1)U 2

1 coth kh1 + ρ(2)U 2
2 coth kh2

}
+ (ρ(2) − ρ(1))gk − σk3,

b2 = −αk{U1 coth kh1 + U2 coth kh2}.
(i) When α = 0, (3.4) reduces to

a0ω
2 + a1ω + a2 = 0. (3.5)

Therefore the system is stable if

a2
1 − 4a0a2 > 0, (3.6)
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or

σk2 − (ρ2 − ρ1)g − k
ρ(1)ρ(2) coth kh1 coth kh2(U2 − U1)

2

ρ(1) coth kh1 + ρ(2) coth kh2
> 0. (3.7)

It is clear from the above inequality that the streaming has a destabilizing effect on the
stability of an interface. (ii) when α �= 0, we find that necessary and sufficient stability
conditions for (3.4) are

b1 > 0, (3.8)

and

a0b
2
2 − a1b1b2 + a2b

2
1 < 0, (3.9)

since a0 is always positive.
We note that condition (3.8) is trivially satisfied since α is always positive. Putting the

values of a0, a1, a2, b1 and b2 from(3.4) into (3.9), it can be shown that the condition for the
stability of the system is

σk2 − (ρ2 − ρ1)g − k
ρ(1)ρ(2) coth kh1 coth kh2(U2 − U1)

2

ρ(1) coth kh1 + ρ(2) coth kh2

×
[

1 +
coth kh1 coth kh2(ρ

(1) − ρ(2))2

(coth kh1 + coth kh2)2ρ(1)ρ(2)

]
> 0. (3.10)

The stability condition (3.10) differs from (3.7) by the additional last term

coth kh1 coth kh2(ρ
(1) − ρ(2))2

ρ(1)ρ(2)(coth kh1 + coth kh2)2
.

Thus condition (3.10) is valid for an infinitesimal α and when α = 0 the last term is absent.
These results seem to be new.

4. Second-order solutions

With the use of the first-order solutions , we obtain the equations for the second-order problem

∇2
0φ

(i)
2 = 0, (i = 1, 2) (4.1)

and the boundary conditions at y = 0.

ρ(1)

{
∂φ

(1)
2

∂y
− ∂η2

∂t0
− ∂η2

∂x
U1

}
− αη2 =

[
−ρ(1)

{
α

ρ(1)
− iω + iU1k

}
2k coth kh1 + αα2

]

×A2 e2iθ − ρ(1) ∂A

∂t1
eiθ + c.c. − 2αα2|A|2, (4.2)

ρ(2)

{
∂φ

(2)
2

∂y
− ∂η2

∂t0
− ∂η2

∂x
U2

}
− αη2 =

[
ρ(2)

{
α

ρ(2)
− iω + iU2k

}
2k coth kh2 + αα2

]

×A2 e2iθ − ρ(2) ∂A

∂t1
eiθ + c.c. − 2αα2|A|2, (4.3)

ρ(2) ∂φ
(2)
2

∂y
− ρ(1) ∂φ

(1)
2

∂y
− {ρ(2) − ρ(1)}∂η2

∂t0
− {ρ(2)U2 − ρ(1)U1}∂η2

∂x

= 2k

{
ρ(2)

(
α

ρ(2)
− iω + ikU2

)
coth kh2

+ ρ(1)

(
α

ρ(1)
− iω + ikU1

)
coth kh1

}
A2 e2iθ + {ρ(2) − ρ(1)}∂A

∂t1
eiθ + c.c.

(4.4)
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ρ(2)

{
∂φ

(2)
2

∂t0
+ U2

∂φ
(2)
2

∂x

}
− ρ(1)

{
∂φ

(1)
2

∂t0
+ U1

∂φ
(1)
2

∂x

}
+ σ

∂2η2

∂x2
+ gη2(ρ

(2) − ρ(1))

=
[[

ρ{2ω(ω − kU) − 1

2
(ω − kU)2(1 + coth2 kh)} +

α2

2ρ
(1 + coth2 kh)

− iα(ω − kU)(1 + coth2 kh) − kρU

{
i
3α

ρ
+ 2(ω − kU)

}]]
A2 e2iθ

+
1

k

{
ρ(1)

(
α

ρ(1)
− iω + ikU1

)
coth kh1

+ ρ(2)

(
α

ρ(2)
− iω + ikU2

)
coth kh2

}
∂A

∂t1
eiθ + c.c.

+

[[
ρ

{
α2

ρ2
+ (ω − kU)2

}
(1 − coth2 kh)

]]
|A|2. (4.5)

The non-secularity condition for the existence of the uniformly valid solution is

∂A

∂t1
= 0. (4.6)

Equations (4.1) to (4.5) furnish the second-order solutions

η2 = −2α2|A|2 + A2A
2 e2iθ + Ā2Ā

2 e−2iθ , (4.7)

φ
(1)
2 = B

(1)
2 A2 e2iθ cosh 2k(y + h1)

sinh 2kh1
+ c.c. + b(1)(t0, t1, t2), (4.8)

φ
(2)
2 = −B

(2)
2 A2e2iθ cosh 2k(y − h2)

sinh 2kh2
+ c.c. + b(2)(t0, t1, t2). (4.9)

Symbols in the above equations are found in appendix A.

5. Third-order solutions

We examine now the third order problem

∇2
0φ

(i)
3 = 0, (i = 1, 2). (5.1)

On substituting the values of η1, φ
(i)
1 from (3.1)–(3.3) and η2, φ

(i)
2 from (4.7)–(4.9) into (B.8),

we obtain

φ
(1)
3 =

{
C

(1)
3 A2Ā +

1

k

∂A

∂t2

}
cosh k(y + h1)

sinh kh1
eiθ + c.c., (5.2)

φ
(2)
3 =

{
C

(2)
3 A2Ā − 1

k

∂A

∂t2

}
cosh k(y − h2)

sinh kh2
eiθ + c.c. (5.3)

Symbols in the above equations are found in appendix A.
We substitute the first- and second-order solutions into the third-order equation. In order

to avoid non-uniformity of the expansion, we again impose the condition that secular terms
vanish. Then from (B.9), we find

i

k

∂D

∂ω

∂A

∂t2
+ qA2Ā = 0, (5.4)

where q is defined in appendix A.
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Figure 2. Stability diagram for U2 = 0.5 cm s−1 and α = 1 gm cm−3 s−1.

We rewrite (5.4) as
∂A

∂t2
+ QA2Ā = 0, (5.5)

which can be easily integrated as

|A|2 = 1

|A0|−2 + 2(Re Q)t2
, (5.6)

where A0 is the initial amplitude and Re Q means the real part of Q. From (5.6), the stability
condition is

Re Q > 0. (5.7)

6. Numerical results

The stability of the system depends on condition (5.7). We show the stable and unstable
regions in figures 2–9. In these figures, the dotted lines (lower lines) represent the linear
curve which divides the plane into a stable region (above the curve) and an unstable region
(below the curve). The upper curve (solid lines) is a nonlinear boundary above which the
flow is unstable and below which the flow is stable. The region above the solid line (Labelled
by U) was originally a stabilized region by the linear theory but is now a destabilized region
by the nonlinear theory since in this region the amplitude will blow up as time passes. The
nonlinearly stable regions occupy far below dotted line (linear curve), but below the linear
curve, even though the amplitude is bounded, the exponential function grows to infinity as
time passes, so we have to exclude these regions from the stable regions. Therefore, only the
overlapping shaded regions S (by vertical lines) are the nonlinearly stabilized regions. Since
below the dotted line which is the linear linear curve (lower curve) the region is unstable, it is
labelled by U. The unshaded regions (intact regions) are unstable regions and labelled by U.
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Figure 3. Stability diagram for U2 = 0.5 cm s−1 and α = 1.5 gm cm−3 s−1.

Figure 4. Stability diagram for U2 = 1 cm s−1 and α = 1 gm cm−3 s−1.

Figures 2 and 4 show the stability diagrams in the h1–k–plane corresponding to the cases
α = 1 gm cm−3 s−1, σ = 0.06 dyn cm−1, ρ1 = 3.652 × 10−4 gm cm−3, ρ2 = 5.97 ×
10−2 gm cm−3, g = 980 cm s−2.

In figures 3 and 5, α is chosen to be 1.5 gm cm−3 s −1; other values remain the same.
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Figure 5. Stability diagram for U2 = 1 cm s−1 and α = 1.5 gm cm−3 s−1.

Figure 6. Stability diagram for U2 = 5 cm s−1 and α = 1 gm cm−3 s−1.

Unlike the linear theory, stability regions form narrow bands, thus in the nonlinear theory
the region of stability is much reduced. In these examples, we have taken U1 = 0. In
figures 2 and 3, U2 is equal to 0.5 cm s−1. In figures 4 and 5 U2 = 1 cm s−1. From these
figures, we see that in the nonlinear theory, the regions for which the system is stable are larger
for the stronger heat flux.
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Figure 7. Stability diagram for U2 = 10 cm s−1 and α = 1 gm cm−3 s−1.

Figure 8. Stability diagram for U2 = 20 cm s−1 and α = 1 gm cm−3 s−1.

For larger values of velocities, stability regions exist only for very large values of k and
are displayed in figures 6–9 for U2 = 5 cm s−1–500 cm s−1.

In figures 2–9, the thickness of vapour varies from 0.01 cm to 0.1 cm, and h2 =
(2 − h1) cm. From these figures we can see that when the fluid flow is quasi-static, the
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Figure 9. Stability diagram for U2 = 500 cm s−1 and α = 1 gm cm−3 s−1.

region of stability reduces as the thickness of the vapour increases. So, with the same heat
flux, the thinner the vapour layer, the easier the system can be stabilized.

However, figures 8 and 9 show that when the streaming velocity is very large, the film
thickness has little influence on the stability of the system due to the fact that the equation is
now dominated by the effect of velocity. To sum up, we have presented an analysis of nonlinear
Kelvin–Helmholtz instability. It is found that unlike in linear theory, the stability region is
existent in the form of narrow bands, the width of which, when the flow is quasi-static, reduces
with the increment of the thickness of the vapour layer. The region of stability is enlarged
with the stronger heat flux.

7. Conclusions

The stability of the Kelvin–Helmholtz flow when there is mass and heat transfer across
the interface is studied. Using the method of multiple time scales, a first-order nonlinear
differential equation describing the evolution of nonlinear waves is obtained. Unlike linear
theory, with nonlinear theory it is evident that the mass and heat transfer plays an important
role in the stability of fluid, in a situation like film boiling and the results can be summarized
as follows.

1. Stronger heat flux enlarges the region of stability.
2. When the streaming velocity is very small, the thinner the vapour layer, the more easily

the system can be stabilized whereas when the velocity is very large, the stability is little
influenced by the thickness of vapour layer.

3. With higher velocities the stability takes place at larger wave numbers.
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Appendix A

Symbols in (4.7)–(4.9) are

A2 = 2k

D(2ω, 2k)

{[[
ρi(ω − kU)

k
β coth 2kh +

ρ

2
(coth2 kh + 1)

(
α

ρ
− iω + ikU

)2

+ 2ρ(ω − kU)2 − i3αkU

]]
− i

αα2

k
[(ω − kU1) coth 2kh1

+ (ω − kU2) coth 2kh2]

}
, (A.1)

B
(1)
2 = 1

2k

[
β(1) +

{
α

ρ(1)
− 2i(ω − kU1)

}
A2 +

αα2

ρ(1)

]
, (A.2)

B
(2)
2 = 1

2k

[
−β(2) +

{
α

ρ(2)
− 2i(ω − kU2)

}
A2 +

αα2

ρ(2)

]
, (A.3)

β(j) = −2k

{
α

ρ(j)
− i(ω − kUj )

}
coth khj (j = 1, 2), (A.4)

ρ(2) ∂b(2)

∂t0
− ρ(1) ∂b(1)

∂t0
=

[[
ρ

{
α2

ρ2
+ (ω − kU)2

}
(1 − coth2 kh) + 2ρgα2

]]
|A|2, (A.5)

Symbols in (5.2)–(5.3) are

C
(1)
3 = −k

[
2B

(1)
2 coth 2kh1 − 2 coth kh1

(
α

ρ(1)
− iω + ikU1

)
α2

k

+
1

2

{
α

ρ(1)
− 3i(ω − kU1)

}
+

α

ρ(1)k2

(
4α2

2 − 3α3
)

−
{(

α

ρ(1)
+ iω − ikU1

)
coth kh +

2αα2

ρ(1)k

}
A2

k

]
, (A.6)

C
(2)
3 = −k

[
2B

(2)
2 coth 2kh2 − 2 coth kh2

(
α

ρ(2)
− iω + ikU2

)
α2

k

− 1

2

{
α

ρ(2)
− 3i(ω − kU2)

}
− α

ρ(2)k2

(
4α2

2 − 3α3
)

+

{
−

(
α

ρ(2)
+ iω − ikU2

)
coth kh +

2αα2

ρ(2)k

}
A2

k

]
, (A.7)

q in (5.4) is

q =
[[

ρ

(
−i(ω − kU)C3 coth kh + A2

{
i
α

ρ
(−ω + 3kU) + (ω − kU)(ω + kU)

}

+ B22k

{
α

ρ
(coth kh coth 2kh − 1) + i[−2ω + kU + (ω − kU) coth kh coth 2kh]

}

+ iα22(ω − kU)

{
α

ρ
− iω + ikU

})]]
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− k

(
ρ(1) coth kh1

{
1

2
(ω − kU1)(ω − 5kU1) + i

α

2ρ(1)
(3ω − 7kU1)

}

+ ρ(2) coth kh2

{
1

2
(ω − kU2)(ω − 5kU2) + i

α

2ρ(2)
(3ω − 7kU2)

})
+ σ

3

2
k4.

(A.8)

Appendix B

The interfacial conditions are given on r = R as

order O(ε) [[
ρ

(
∂φ1

∂y
− ∂η1

∂t0
− ∂η1

∂x

∂φ0

∂x

)]]
= 0, (B.1)

ρ(1)

(
∂φ

(1)
1

∂y
− ∂η1

∂t0
− ∂η1

∂x

∂φ0

∂x

)
= αη1, (B.2)

[[
ρ

(
∂φ1

∂t0
+ gη1 +

∂φ1

∂x

∂φ0

∂x

)]]
= −σ

∂2η1

∂x2
, (B.3)

order O(ε2)[[
ρ

(
∂φ2

∂y
+

∂2φ1

∂y2
η1 − ∂η2

∂t0
− ∂η1

∂t1
− ∂η1

∂x

∂φ1

∂x
− ∂η2

∂x

∂φ0

∂x

)]]
= 0, (B.4)

ρ(1)

(
∂φ

(1)
2

∂y
+

∂2φ
(1)
1

∂y2
η1 − ∂η2

∂t0
− ∂η1

∂t1
− ∂η1

∂x

∂φ
(1)
1

∂x
− ∂η2

∂x

∂φ0

∂x

)
= α

(
η2 + α2η

2
1

)
, (B.5)

[[
ρ

{
∂φ2

∂t0
+

∂φ1

∂t1
+

∂2φ1

∂t0∂y
η1 +

1

2

[(
∂φ1

∂x

)2

+

(
∂φ1

∂y

)2]
+

∂φ2

∂x

∂φ0

∂x
+

∂φ1

∂y

(
∂η1

∂t0
− ∂φ1

∂y

)

+ gη2 +
∂φ0

∂x

(
−∂η1

∂x

∂η1

∂t0
+ 2

∂η1

∂x

∂φ1

∂y
−

(
∂η1

∂x

)2
∂φ0

∂x
+

∂2φ1

∂x∂y
η1

)}]]

= − σ
∂2η2

∂x2
, (B.6)

order O(ε3)[[
ρ

{
∂φ3

∂y
+

∂2φ2

∂y2
η1 +

∂2φ1

∂y2
η2 +

1

2

∂3φ1

∂y3
η2

1 − ∂η3

∂t0
− ∂η2

∂t1
− ∂η1

∂t2

− ∂η1

∂x

(
∂φ2

∂x
+

∂2φ1

∂x∂y
η1

)
− ∂η2

∂x

∂φ1

∂x
− ∂η3

∂x

∂φ0

∂x

}]]
= 0, (B.7)

ρ(1)

{
∂φ

(1)
3

∂y
+

∂2φ
(1)
2

∂y2
η1 +

∂2φ
(1)
1

∂y2
η2 +

1

2

∂3φ
(1)
1

∂y3
η2

1 − ∂η3

∂t0
− ∂η2

∂t1
− ∂η1

∂t2

− ∂η1

∂x

(
∂φ

(1)
2

∂x
+

∂2φ
(1)
1

∂x∂y
η1

)
− ∂η2

∂x

∂φ
(1)
1

∂x
− ∂η3

∂x

∂φ0

∂x

}
= α

(
η3 + 2α2η1η2 + α3η

3
1

)
, (B.8)
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[[
ρ

{
∂φ3

∂t0
+ gη3 +

∂φ2

∂t1
+

∂φ1

∂t2
+

∂2φ1

∂t0∂y
η2 +

(
∂2φ1

∂t1∂y
+

∂2φ2

∂t0∂y

)
η1

+
1

2

∂3φ1

∂t0∂y2
η2

1 +
∂φ1

∂y

(
∂φ2

∂y
+

∂2φ1

∂y2
η1

)
+

∂φ1

∂x

(
∂φ2

∂x
+

∂2φ1

∂y∂x
η1

)

−
(

∂φ1

∂y
− ∂η1

∂t0

)(
∂φ2

∂y
− ∂φ1

∂x

∂η1

∂x

)
+

∂φ1

∂y

(
∂η2

∂t0
+

∂η1

∂t1
− ∂φ2

∂y
+

∂φ1

∂x

∂η1

∂x

)

+ η1
∂2φ1

∂y2

(
∂η1

∂t0
− 2

∂φ1

∂y

)
+

∂φ0

∂x

(
∂φ3

∂x
+

∂2φ1

∂y∂x
η2 +

∂2φ2

∂y∂x
η1 +

∂3φ1

∂y2∂x

η2
1

2

+ 2
∂φ2

∂y

∂η1

∂x
+ 2

∂φ1

∂y

∂η2

∂x
+ 2

∂2φ1

∂y2

∂η1

∂x
η1 − ∂η2

∂t0

∂η1

∂x
− ∂η1

∂t0

∂η2

∂x
− ∂η1

∂t1

∂η1

∂x

− 2
∂η1

∂x

∂η2

∂x

∂φ0

∂x

)
− 2

(
∂η1

∂x

)2
∂φ1

∂x

∂φ0

∂x

}]]
= −σ

(
∂2η3

∂x2
− 3

2

∂2η1

∂x2

)
,

(B.9)
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